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ABSTRACT

It is shown that the existence of a strict local minimum satisfying the

constraint qualification of [15] or McCormick ’s [11] second order sufficient

optimality condition implies the existence of a class of exact local penalty

functions (that is ones with a finite value of the penalty parameter) for

a nonlinear programming problem . A lower bound to the penalty parameter is

given by a norm of the optimal Lagrange multipliers which is dual to the norm

used in the penalty function.
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SIGNIFICANCE AND EXPLAMATIOW

Exact penalty functions are asSociated with a constrained optimization

problem in such a way that for finite values of a penalty parameter there is

a correspondence between local (global) optimal solutions of the unconstrained

penalty function and local (global) solutions of the constrained optimization

problem. Such correspondence is important because it can be exploited to

find solutions to complicated constrained optimization problems by solving

a single unconstrained problem .

In this work it is shown that under certain reasonable conditions there I
is a correspondence between solutions of the constrained optimization

problem and the unconstrained optimal solutions of a wide class of exact

penalty functions. Lower bounds are also given for the penalty parameter.

~~LJ

The responsibility for the wording and views expressed in this descriptive
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EXACT PENALTY FUNCTIONS IN NONLINEAR PROGRAMNIPZ

S. —? . Han and 0. L. Nangasarian

1. INTRODUCTION

We shall be concerned here with the nonlinear programi ng problem

minimize f Cx)

subject to g (x )  < 0 (1.1)

h(x) — 0

where f ,  g and h are functions from into R , Rtm and Rk respectively. A

point * in R’~ satisfying the constraints g(x) ~ 0, h(x) — 0 is called feasible. A

feasible point ~ such that f ( )  < f Cx) for all feasible x * x in some neighborhood

14(x) of x is called a local solution of (1.1). If f(x) ~ f(x) then ~ is called

a strict local solution of (1.1). We shall associate with this nonlinear programing

problem the following class of penalty functions

P(x ,cl) :— f(x) + aQ(J~g (x)~~,h(x)I~) (1.2)

where ~ is a nonx~egative real number (~~Cx)~~)~ .max{0.9~ (x)}. j  l ,. . . ,m, ~~~

is any fixed vector norm in ?~ , and Q is some function from the nonnegative real

lime into itself with the following properties

Q(O) — 0, Q(~ ) > 0 for ~ > 0, > Q’ (O+) :— list ~~~~ 
- Q(O) 

> o . ( 1.3)
C~0+

Obviously the third condition of (1.3) is equivalent to Q’(O) being positive and

finite when Q is differentiable at 0. Included in this class of penalty functions

is the classical exact penalty function

P
1
(x.a) :- f (x) + 

1jl ~~~~ 
+ Ih ~ (x) I~ ( 1.4)

which ii obtained from (1.2) by setting Q (C) C and using the one norm. With some

exceptions 11,2) most of the literature on exact penalty functions is generally devoted

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024 and by the
National Science Foundation under Grant No. MCS74-20584 A02.
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to this particular penalty function (9 ,13 ,16.2l ,22) and is mainly concerned with conditions

that ensure that P
1
(x,c1) has a local (global) minima at a local (global) ainisma

of (1.1) for all sufficiently large but finite values of a. The best known among these

conditions is probably the one due to Pietraykoweki 116) which require. the linear

independence of the gradients of all the equality constraints and of th. active inequality

constraints, that is those inequalities satisfied as equalities at the point being

considered . One of our principal results, Theorem 4.4 , is more natural than

Pietrzykowski’s result which it subsumes. It is more natural because it merely requires

the constraint qualification of 1151. This constraint qualification besides ensuring the

satisfaction of the Karush-Kuhn-Tucker conditions at local minima of (1.1) has been

shown to be a necessary and sufficient condition for the constraints of (1.1) to be

stable under small perturbations (19] . In this sense this constraint qualification

may be viewed as the minimum requ irement for a problem to be numerically well-posed .

C~ r generalization of the penalty P
1 

(x, cz) to the class P(x , a) is not merely general-

ization for its own sake but in order to allow us to handle other norms in (1.2) and

in particular the infinity and two norms which we will make use of elsewhere 171 to obtain

improved quasi—Newton computational algorithms (4,5,6,18). We also note that the

classical exterior penalty function (31, which can also be obtained from (1.2) by using

the two norm and letting ~~~~ — t~~, violates however the requ irement (1.3) because

Q’ (0) — 0. This is as expected becau se it is well known that for the classical exterior

penalty function the penalty parameter a is not finite. (See however, an interesting

exception to this for linear programs in (1) and references therein.) Using instead

Q (C )  — C or Q ( C )  — C + C2 with the two norm would however result with an exact

penalty function which would again be nondifferantiable.

Because of the significant role played in this paper by the constraint qualif ica-

tion of (151, S.ction 2 of this paper will be devoted to the derivation of an equivalent

sta tement of this constraint qualification which will be used in deriving on. of our

principal resu lts , Theorem 4.4.  Section 3 is devoted to second order sufficient

4
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opti.mality conditions which also play an important role in establishi ng the existe nce

of exact penalty minimum points. In particular we derive a second order sufficient

optimality condition of the Fritz John type (Theorem 3.1) which subsumes McCormick’s

well known second order sufficient optimality condition 13,111 . We also give an

equiv~~ent formulation (3.6) of McCormick’s second order condition (3.9) which may

be used to derive second order optimality conditions for quadratic programing without

any knowledge of the optimal Lagrange multipliers (Corollary 3.6). Section 4 contains

our principal results pertaining to the class of exact penalty function P(x ,a) defined

by ( 1.2) . Theorem 4.1 shows that the existence of an exact penalty function minimum

point implies the existence of a minimum point to the nonlinear programing problem

(1.1). Theorem 4.2 establishes the equivalence of local minima of the class of exact

penalty functions defined by (1.2) . Theorem 4.4 shows that for sufficiently large

but f in i te  a, P (x ,a) has a local minimum point at any strict local minimum point ~

of (1.1) which satisfies the constraint qualification of (151 . In Theorem 4.6 we

show that McCormick ’ s second order sufficiency conditions imply that P(x,U) has a

strict local minimum for all values of the penalty parameter a that are larger than

a constant times a norm of the optimal Lagrange multipliers. This norm is dual to the

norm used in the definition of the exact penalty function (1.2). In Theor em 4.7 we

show that the existence of a local minimum of P(x ,a) for all sufficiently large a

implies , under suitable assumptions , the satisfaction of the Karush—Xuhn—Tucker condi-

tions (101 for problem (1.1) . In our final theorem , Theorem 4.8,  we treat the con’e.x

case and again establish the fact tha t the generalized Slater constraint qualification

(121 implies that P(x,a) has a global minimum for all values of the penalty parameter

larger or equal to the lower bound establ ished in Theorem 4 • 6.

To simplify notation a vector is either a row or a column vector depending on

the context. For example, the inner product of two vectors x and y is written

simply as xy rather than xTy.
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2. Equivalent Forms of the Constraint Qualifi cation

We begin by recalling the following definition of the constraint qualification.

2.1. Definition (12 ,15] . Let g(x)  < 0, h(x) — 0  and I — f i~g1(~) — 0, i — l, . . . ,m J .

The constraints g(x) < 0, h(x) — 0 are said to satisfy the constraint qualification

of (151 at x if g is differentiable at x, h is continuously differentiable at x,

and

(x) , i — 1, . . . ,k , are linearly indep endent

and , there exists a z e Rn such that

— - . (2.1)Vg . (x) z < 0, i a I -

Th
i (x)z — 0

, i — l , . . . , k

It can be shown by using theorems of the alternative (121 that (2.1) is equivalent

to the following condition

There exist no u~~, i a I and vi . i — l , . . . , k such that

k

~ u~ Vg~~(x) + 
~ 

v. Vh~(~) — 0
ifI i—l 

. (2.2)

~. e I

(u i~ 
i I I , v~ , i — 1,.. .,k) * 0

We state and prove now an alternate formulation of (2 . 1)  tha t will be needed in

deriving our exact penalty results.

2.2. Theorem (Constraint Qualification Equivalence). Let g (x) < 0, h(x) 0,

I — (i(g ~ () — 0, i — 1,... ,m} and let g and h be continuously differentiable at x.

The conitraint qualification (2.1) is satisfied at x if and only if there exists

an open neighborhood N (x ;E )  of * such that

For each bounded function b(x) N(x ;c)  -~

there exists a bounded fw)ction d(x) N(x;~~) ~

such that for all x in N(x :c)
(2.3)

Vgi (x) d(x) < —1 . i I I

Ybi (x) d(x)  — bi (x) . i —

—4—
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Proof (2.3)  > (2.1) : Just .t b(x) — 0 and x — x in (2.3) and note that for

• each b in Rk, Vh (x)z — bi. 
i — l,...,k, has a solution z in Rn.

(2.1) > (2.3): Because Vh~ (x)~ i — l,...,k are linearly independent it follows

• that k < n. Choose n - k vectors in R’~, w
1,w2,. . .,w~~~ such that

are linearly independent. Define the n x n matr ix

function A(x ) as follows
- 

Vh1
(x)

Vh.K (x)

w~

n-k

Since A(x) is nonsingular there exists an c > 0 such A 1 
(x) exists and is bounded

in N(x; 5) .  By (2.1) there exists a vector in Rn such that

• Vg~~(~~)z  < 0, i a I

Vh.(X)Z — 0, i — 1,... ,k

Define s(x) — A
1 (x) c where

0

0

c 1.. (Rn .w z

n-k_
V S

Clearly z (x)  — z and s (x ) is continuous in N (x , c ) . Thus we can shrink e, if

necessary , so that

Vg~~(x )z ( x)  < — for x 1 N(x;e )  and i e I

where -y — max{Vg~ ( ) }  < 0. we also have that
is’

Vh
i
(x)z(x) — 0 for x I N (~ ;c) and i — l , . . . , k

—5—
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Let b(x) be any given bounded function from N( ;C) into Rk, let

rb(x)1
b(x) — I R~ , and let y(x)  — A(x) ¼(x) . The function y(x)  is bounded in

10  J
N(~~ s) and furthermore

Vh~~(x) y(x) — b1(x) , I — l,...,k

Let

d (x)  — Bz (x) + y(x)

where

B — ~~~ + ~~ and A — max sup ~Vg. (x)y(x))
isx xIN(~~ic) 

1

Hence d(x) is bOunded and satisfies (2.3). 0

We note that the more stringent constraint qualification used by Pietrzykowski (16] ,

namely that the gradients Vq . (i) , i I I, 
~
‘l ~~ • ;Vhk 

(i) , are linearly independent,

implies the constraint qualification (2.2) and hence its equivalents (2.1) and (2.3).

-6-
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3. Second Order Sufficient Optimality Conditions

We f i rs t  derive in this section a second order sufficient optimality condition

of the Fritz John type for problem (1.1) which subsume s the standard second order

sufficiency condition of Mccormick (111 .

3.1. Theorem (Generalized Second Order Sufficiency). Let x be a local solution

of (1.1) or let the (X,U
0
,u,~~) I ~~~~~~~ satisfy the Fritz John necessary optimality

conditions for problem (1.1)

in k
u0V f ( x) + ~ u.~g.() + ~ v~Vh~~(x) — 0

i—l j 1

> o, ~~~~~~ * a . (3.1)

ug (x) = 0, g(~ ) < 0 , h ( x) 0

Let f, g and h be twice differentiable at x, let I — uiIgi (
~

) — 0, i —

and let

Vf(x)x < 0

Vg~ (x)x < 0 , i a I > xV
11
L°(~ ,u0

,u ,v)x > 0 (3.2)

Vh . (x)x = 0, i —
1

x * 0

where

L0 (x , u0
,u ,v) — u

0f (x) + ug(x) + vh(x) (3 .3 )

and V
11
L0(x ,u0

,u,v) denotes the g~ X n Hessian of L(x,u
0
,u,v) with respect to

its first argument x. Then x is a strict local minimum of (1.1).

Proof. We shall assume that x is not a strict local minimum of (1.1) and exhibit a

contradiction. Since x is assumed not to be a strict local minimum of (1.1), there

exists a sequence of feasible points {x~J, that is g (x~) < 0 and h(x~ ) — 0,

converging to x , such that f ( x ~ ) < f(~) and x~ * . Hence

—7—
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0 > f (x ~~ - - Vf( ) 
(x~ - ~~ + 

o ( i lx ~ - xli )
— 11x~ — x li llzi — xli iix~ — ;ii

0 > 
~~~~~~~ — 

~~~~~~ 
— Vg (~) 

(x~ — 
+ 

o (llx:J — xli ) 
, i I I

— I i x~ — ;it iix~~— 11 flx~ —

___________ — Vhi
(
~

) 
~~ j + 

o(RX - xil) 
, i =

—

Hence there exists an accumulation point s of the sequence (~ ) } := 
X such that

~ ll — 1, Vf(x) < 0, Vg~ (~)i < 0, if I, Vh .(x) — 0, i = l,...,k . (3.4)

Making use of the twice differentiability property now gives

0 > 
f ( x)~~ — f(x) 

— 
Vf (X ) S ~ + ~~

. s~ V 2f ( x)s~ + 
o(flx~ — j[[~

li x — xli lix — xii lix — xli

0 — 

Vg~~~ )s~ 
+ ~ + 

0(~~~~—~~ 1) 
, j  ~

0 — 
hi

(x
~
) — h ~ (~ ) 

= + !- sivlh . ( x)s i + ~~~~~ , i —

lix — xii lix — xli lx - xli

Multiplication of the above relations respectively by 
~~~~~ 

U ,  i I I , ,, i —

su ing and making use of the first equality of the Fritz John conditions (3.1) which

must hold when x is a local solution of (1.1) ( 12, 15] gives

0 > ~~
. s~V

11
L( ,j

0
, j , ) s ~ + 

o ( 1 1 x-~~~

Hence the accumulation point of {s~ } satisfies

sV
11
L(x ,u0,u,v)s < 0

This inequality together with (3.4) contradict (3 . 2 ) . 0

We state now a paraphrase of McCormick’s second order sufficient optima lity

condition. which may have certain advantages over the standard way 13,111 these

1 

-8-
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conditions are stated • We will show that the paraphrase and standard statements are

equivalent , and we discuss below some of the advantages of the paraphrase.

3.2. Theorem (Paraphrase of McCormick ’s Second Order Sufficiency) . Let

• satisfy the Karush-Xuhn-t’ucker necessary optimality conditions for

problem (1.1)

m 
- 

Ii
Vf (x) + ~ u~Vg~ (x) + } v4Vh~ (x) — 0

j=1 j — i .‘ . (3.5)

U > 0, ~g( x) — 0, g(x )  < 0, h(~) — 0

Let f, g and h be twice differentiable at x , let I — {iig
~
(
~
) — 0 , i —

and let

Vf(x)x < 0

V~~~(x)x < 0, i I I - — -
— —> XV

11
L(X,U.V)X > 0 (3.6)

Vh. (x)x — 0, i —

t
where

L(x,u,v) = f(x) + ug(x) + vh(x) . (3.7)

Then x is a strict local minimum of (1.1).

3.3. Remark. Theorem 3.1 subsumes Theorem 3.2 because whenever the Karush-Kuhn-Tocker

conditions (3.5) are satisfied, so are the Fritz John conditions (3.1) with — 1.

• The following simple example shows that there are indeed cases which are covered by

Theorem 3.1 and not by Theorem 3.2:

minimize

subject to x2 — x < 0 (3.8)

x
~~
+x

~~
< 0 .

The origin in R2 is the only feasible point and hence is a Strict local solution.

Theorem 3.1 can be used to verify the uniqueness of the solution because the Fritz John

conditions are satisfied , whereas because the )Carush-Kuhn-Tucker conditions are not

satisfied , Theorem 3.2 cannot be employed . The same example (3.8) can be used to show

-9-
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that the origin is not a local siniu~~ of P1
(x ,a) as defined in (1.4) for this

problem. Hence the second order Fritz John conditions cannot guarantee the existence

of a local minimum for P1 
(x, a ) .  We will show however in Theorem 4.6 that McCormick ’s

second order sufficient optimality conditions are sufficient to ensure that all exact

penalty functions as defined by (1.2) have a strict local minimum.

3.4. Remark. The standard way of stating the second order sufficiency condition is

to replace the implication (3.6) by the following equivalent one

Vgi
(
~~

)x — 0, i I J 
\

Vg1
( ) x  ~ 0, i I K \ - - -
- 

> 0 (3.9)
Vh

i
(x)x — 0, i —

x *0

where J and K are the following subsets of I

J — {i~g~~( )  = 0, u
i > 0, i —

(3.10)
K — {ijg1(~) 0, — 0, I — 1,...,.)

That implication (3.9) is equivalent to implication (3.6) can be easily established

as shown by the following theorem.

3.5. Theorem (Equ ivalence of (3.6) arid (3 . 9 ) ) .  Under the assumptions of Theorem 3.2

implications (3.6) and (3.9) are equivalent.

Proof. We will show that, under the assumptions of Theorem 3.2, the sets S and T

in R~ satisf ying the conditions on the left—hand side of implications (3.6) and

(3.9)  respective ly are equivalent .

We first show that S C T. We assume that S is nonempty, otherwise the implica-

tion is trivially true. Let x be in S. Clearly, we only need to show that for

j I J, Vg~ ()z — 0. By (3.5) we have that

k
Vf (x)x + ~ u~vg~~(x)x + ~ v~Vh~~(x)x — 0 .

jII

Because Vh~~(X)x 0 for i — l , . . . ,k and — 0 for j I K, we have

Vf (x)x + U Vg ()x — 0 .

~~~~~
‘— ii i r—r—- -~- ~~~~~~~~~ ~~~

L:--- -- -- L ~- :  
~~~~~~~

-
~~~~~

- - - - -
~~~~~~~

--
~~~~~

-
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Because each term in the above equation is nonpositive and > 0 for j  I J, we

then have

— 0 for ~ I .7

¶ 
. 

We now prove that T C S. Again we assume that T is nonempty and let x be

any point in T. It suffices to show that Vf(x)x < 0. As before, we have

k
Vf(x)x + U Vg ()x + Vh (x)x — 0

jII ~ j=l ~

Clearly Vf (x)x — 0 because all the other terms are zeros. The proof is then complete .

We give now an interpretation of the implication (3.6). The set of x in Rn

satisfying the left-hand side conditions of (3.6) can be seen (14) to be the set of

directions along which the linearized problem, obtained by linearizing (1.1) around

x, has nonunique solutions. In order to have uniqueness for the nonlinear problem,

implication (3.6) requires that the Hessian of the Lagrangian be positive definite

along these directions. Besides having this simple interpretation, implication (3.6)

is also simpler than (3.9) because the left—hand side conditions of (3.6) do not

require any information on the multiplier vector u whereas the corresponding condi-

tions of (3.9) do. As an example of the usefulness of this fact we give below a

sufficient condition for the existence of a strict local minim*~ point for a quadratic

progra ing problem which does not require the knowledge of any of the multipliers.

3.6. Corollary (Sufficient Conditions for a Strict Local Minimum in Quadratic

Progra ing). Let x be a local solution of the quadratic program

minimize 4 x~~c + px

subject to Ax < b (3.11)

Cx — d

where Q, A and C are n x 
~~, in * n and k X n matrices respectively with Q

sy stric , and p, b and d are vectors in R~, R~ and Rk respectively . Let

I — (ilk i — b~. I 1,...,m}. If

—11—
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(Q + p )x < 0  \
i 

Aix < ~~. ~ • ~ ) —> xQx > 0 (3.12)

I c x - 0  /
then x is a strict local minimum of (3.11).

- ~~~~~~~~~~~~~~~~~~~~~~ 
- 

. 
______--

~~~~~~~~

_ _.-



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

4 • ~ cact Penalty Functions

We derive in this section our principal results which relate local (global) solu-

tions of the penalty function (1.2) to local (global) solutions of the nonlinear

progr ing problem (1.1). Our vehicle for deriving many of the results of this

section will be the classical exact penalty function P1(x , ci) defined

in (1.4) . But becau se we wish to establish these results for the more general penalty

function of (1.2) we establ ish an important equivalence between members of the class

of penalty functions given by (1.2) in Theorem 4.2 below. Before doing this we

establish the sufficiency of the existence of an exact penalty minimum point for the

existence of a minimum point to the nonlinear progr~~~ ing problem. This theorem was

given in (13) without proof.

4.1. Theorem (Sufficiency of ~~act Penalty Minimum) . If there exists an a > 0 such

that for all a > a , P(x,a) < P(x,ci) for all x in some set Y containing x and some

feasible point of (1.1), then x solves (1.1) subject to the extra condition that X I  Y.

Proof. We first show by contradiction that i~ must be feasible for problem (1.1).

If x is infeasible then Q(lIg(x)~~,h (x)ii ) 
) 0. Choose any feasible point x which

is also in Y and let

I f (~~) — f (~~) -
a > max~~Q( 11g( ~ ) ,h (~ )fl 

a

We then have

f (~~) — P (~~,a) > P (x ,a) — f ( )  + aQ ( il g (x )~ ,h( x ) i l  ) > f ( x )

where the last inequality follows from the choice of a. This gives a contradiction

and hence ~ is feasible for (1.1) . To show that is optimal for (1.1) let x

be any other feasible point for (1.1) which ii also in Y and let a > U . Then

f ( x )  = P(x ,a) < P( x ,a) — f i x)

and hence x solves (1.1) with the added restriction tha t x I Y.

Vu show now that local minima of exact penalty functions of the class given by

(1.2) are equivalent .

-13-
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4.2. Theorem (Equivalence of Local Minima of Exact Penalty Functions) . Let U~ D

and fi li v denote two vector norms in RBek and let the corresponding exact penalty

functions defined by (1.2) be denoted by P (x,a) and P (x,a) with corresponding

and 
~v satisfying (1.3) . If there exists an x in Rin, an a > 0, and a

neighborhood N
~ 
(x) of x containing some feasible point of (1.1) such that g and h

are continuous on N (x) and
U

P (x,a) < P (x,a) for all x I N Cx) and a > a
U — u  u — u

then there exists an > 0 and a neighborhood N ( )  containing some feasible point

of (1.1) such that

c P (x,a) for all x I N (x) and a

where

— 1 +  Q ’ (O +) a
— 1 - £ 

~v~
°
~~~:v 

for any e I (0,1)

-
~~~ 

is the positive nuu~er relating the u-norm and the v-norm in R~~~ by

_ _ _  
m+k

~
‘uv < for all nonzero y I R

il y il u . -

Proof. By Theorem 4.1, ~ is feasible for problem (1.1) . Choose £ I (0,1) and

t > 0  such that

(1 + e)Q’(O+)t > Q (t) and Q (t) > (1 — c)Q ’(O+) t  for t I (0,t)

and choose N () C N ( )  sufficiently small such that IIg(x) + ,h ( x) Ii~ ~ 
t and

lig (x) + ,h( x) Ii~ 
c ~ for x I N ( ~). This is possible because g ()~ — 0, h(~ ) — 0

and g and h are continuous on N (i) . t~ te that N
~ 
Cx) contains a feasible point

to problem (1.1) , namely the point x itself. For any a ) and x I N
~
(x) we have

—14—
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Pv (X•5) — fCx) + c*Q~(Ilg(x)~ , h(x)

> f C x )  + a(1 — c)Q ’(0+) lI g(x )~ ,h (x ) II
> f ( x )  + ay (l —

> f ( x )  + Y L ) Q l ( O + )  Q
~
(lI9(x)÷.h(x)II~

)

Q’(O+)
> f C ~ ) + ~ [1+ )Q ’co+) Q~(ii~ (x)+.P~~)Il~)

— f( ;)

— f ( x )  + 
~~~~~~~~~~~~~~~~~

— P ( x ,a) .

To prove our next principal resu lt, namely that when a strict loca l minimum of

(1.1) exists satisfying the constraint qualification of (15) , a local minimum to the

exact penalty function P(x,a) exists, we make use of the following result due to —

Pietrzykowski

4 .3 .  Leama (Piet rzykowski 117)) .  Let f , g and h be continuous on a neighborhood

of x and let x be a strict local minimum point of problem (1.1). There exists a

number a > 0 such that for any a > & there exists a positive number c(a ) and
na vector x l a )  in R such that

C i )  x(cs) I N ( x r c ( a ) )

( ii )  lim c( s)  — 0

• Ciii) P(x(cz),a) < P(x,a) for all x l  N(x;I (a))

4 .4 .  Theorem (Strict Local Minimum and Constraint Qualification Imply Local Mini mi

of Exact Penalty). Let f, g and h be cont inuously differentiable on a neighbor-

hood of a strict local mi n imum point of ~ of (1.1) and let the constrai nt qualifica-

tion (2.1) hold at x. Then for each norm I~ fl in R~~k there exists an a ~ 0,

such that for all a > a , x is a local minimum of P(x,a), where P(x,a) is defined

L 

in ( 1 . 2 )  with Q satisfying (1.3) .

Proof. We will establish the result for P
1
(x ,a) of (1.4) and the theorem will follow,

• by virtue of Theorem 4.2 , for all other P(x,a) defined by (1.2) with Q satisfying if

(1 .3) .

-15-



Let x be a strict local minimum of (1.1) in the neighborhood N( x~ t ) .  If

I — (iIg~ (~ ) — 0, i — i,...,.) is empty and there sr e no equality constraints h(x) — 0,the theorem is trivially true. So assume that I is nonempty or there exists at

least one equality constraint. By L e a  4.3, for all sufficiently large a, there

exist c(s) > 0 and x (a) such that x (a) is a local minimum point of P
1
(x,~)

in N (x~e (a)) and lim c(s) — 0. Let a be sufficiently large such that t (a) <

If for such an a the point x(a) is feasible for problem (1.1), then by Lemma 4.3

> P
1
(x(s),a) f(x(a))

Because ~ is a strict local minimum of (1.1) , we then have that x — x (a) and hence

x is a local minimum of P (x , a ) .  Therefore , to complete the proof we

only need to show that x(s) is feasible for all sufficiently large a. We shall

assume the contrary, that is there exists a sequence of positive numbers

such that x (s
i
) is infeasible for problem (1.1), and exhibit a contradiction. Let

a neighborhood N (xis) be defined as in Theorem 2.2 and consider the bounded function

b (x) : N(x:c) -~ Rk defined by

f—h j (x ) / Ih ~ C x I  if hi (x) * 0b C x ) — ~~( 0 if h ( x)— 0 .i 0

By Theorem 2.2 there exists a bounded function d (x) N(x ;c) -, Rn such that for

all x I N(x ;e)

V~~ (x)d(x) < —1, 1 I I

Vh
i
(x)d(x) — —l if h~ (x) ‘ 0

0 if h~ (x)~~~0

1 if h~ (x) < 0

Now choose 
~l 

I (0,c) such that gi (x) < 0 for x I ti( ,c
1
) and i f I. We then

have for x I N (x ,c
1
) and x infeasible for (1.1) the following directional derive-

tive for P
1
(x,a) of (1.4) in the direction d (x)

—16—
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P~~(x~a ;d(x) ) — Vf (x)d (x) + a 
~ 

Vg~~(x)d(x)  + a ~ (Vg~ (x)d(x))~
g1

(x)>O g
1
Cx) 0

+ a ~ Vh~ (x)d (x )  + a 
~ 

_ V h
i

(x )d (x )  + a ~ lvh. Cx)dCx I
h~ (x) >0 h1(X ) < O h~ (x)=0 1

~ Ii Vt (x) fl 2 lld Cx) 11 2 - a

Hence Pj (x(a j )
~~

si
;d( x(a

i) ) )  < 0 for s
i sufficiently large. This contradicts the

tact that x(a~ ) is a local minimum of P1
(x~a~ ) .  This contradiction establishes the

theorem for P1
(x,a) and consequently for all P(x ,a) of (1.2) with Q satisfying (1.3).°

We establish next the existence of a strict local minimum of the exact penalty

function at each strict local minimum of problem (1.1) which satisfies the second

order sufficient optimality condition. of Theorem 3.2. In addition we are able under

these assumptions to give a lower bound to the penalty parameter a. We begin by

establishing a l~~~ta.

4.5. Lemma. Let the assumptions of Theorem 3.2 hold . Then for any fixed (u,v) I Rm
~~

• such that u > u and v > l v i ,  is a strict local minimum of the following function

m k
p (x , u , v) t = f ( x )  + ~ u~g1(x)~ + ~

• i—i j — l

Proof. If the l~~~a were false, then there exists a sequence fx~) converging to

such that x~ * ~ and

<

Hence

— f (~) + 

~L ujgj (x~ )~ + 

~ 
v~Ih~(x~)l ~ 0

By passing to a subsequence , if necessary , we have a vector s with Il s il — 1 such

that s — h a  
~ 

. Therefore
i-~— lIx~ -

k
Vf (,b s + ~ uj (Vg i (x) s) + + vi I

~~i’~~
sI ~ 0

ill  i—i

—17—
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where I — ( iig
i
(x) — 0, 1 — 1,.. .,m}. Since (x,u ,v) satisfy the Xarush-Xuhn--Tucker

conditions (3.5)  we also have that

~~~ 

(u~(V g~ (~ )a)~ — ~Vg~~( )sJ + 

~~ 

1v~~lVh~~(x)si  — vjvhi()51 ~ 
0

Because u > ~ and v > l 1 .  each term in the above summation is nonnegative and

hence zero . Thus it follows that

Vg1()s — 0 for i e I and u1 
> 0

< 0 for i I I and — 0

Vh1(x)s — 0 for i — 1,.. .,k

By the second order sufficiency condition (3.6)  or equivalently (3.9) it follows that

> 0. This implies that for sufficiently large j  that

L(x ~ ,u,v) > L(x,u,v)

and consequently

~~~~~~ > 9 ( x ~~, , )

> L(x~~,u, v) I -

> L(x ,u ,v)

if — f(i)

— 9 ( x ,u, v)

> W ( z ~~,u, v)

which is a contradiction. Hence the lemma is true.

To establish a lower bound for the penalty par etar we need the concept of dual

norme. Recall that for any given vector norm . U in R
t there is a corresp onding

vector norm 
~~~~~~~ 

called the dual norm of II . f l .  which i. defined by

lx ii - sup yx .
Ii y II —i

Recall also that if • > p, q ~ 1 and + — 1 then for any z in Rt the p-norm

ll~ ll ‘ C 
~ 

z1$~~~’~ and the q-nora l i z i l  are dual to each other . For a
~ 1—1 q

positive definite and symmetric I x & matr ix A we may define a vector

— 18—
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norm ll z l l A by }l z l l & (zAz) 1”2. The dual norm of ‘1 11 A is 1 1 1  l• 
For a

detailed discussion on the duality of norms readers are referred to Rockafellar 120,

Chapter 15] or Householder (8. pp. 39—45 ) . We note here that it follows from the

definition of dual norms that if two norms - and U 
. are dual to each other

then for any x and y we have if

Ixy l ~ ll x li l1~ ll .

This is known as the generalized Cauchy inequality and will be needed in the

proof of the following theorem.

4.6. Theorem (Second Order Sufficiency Implies Strict Local Minimum of Exact Penalty)

Let the assumptions of Theorem 3.2 hold. Let Q satisfy (1.3) and be convex on R+ s

let II ~ll be any given vector norm in ~~~~ and P ( x ,a) be its corresponding exact

penalty function defined as in (1.2), and let ll li be its dual norm . Then for

any u > a  where

— lt ~~~
.
~~~ l I ’

a Q’ (o+)

the point x is a strict local minimum of P(x,a).

Proof. For a satisfying the above inequality we can find (u,v) I such that

u > u , v >  i;i and

aQ’ (O+) 
~ li u ,v Il ’ 

‘ iI & , 1 l ’
By Lemma 4.5 there exists a neighborhood N (x )  of such that for x * and x I N(x)

P C ~~,u ,v) < v ’(x , u v)

where P is defined in the sante lemma . Hence by the convexity of Q and by

the generalized Cauchy inequality we have that for any x I N(x) , a > a

~~~~~~~~~ and x * x tha t

P(x.a) > f (x )  +

> f(x) + ~u, v~~~ j J g(x)~~, h (x) J j

> f (x )  + 

~ 
u
j~j(x)~ + 

~~~ 

v~ lh~ (x ) I

• > P (x ,u,v)

— P (x ,a) . C

I .  —19—
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It is interesting to note that if Q’ (0+) — 1 then

— 1k~’°_~ &2 — lI U , V 11 2 . &_ — li~ . l i ~
We establish now the fact the Karush-Kuhn—Tucker conditions (3.5) for problem

(1.1) are under suitable conditions satisfied at local minima of P (x ,a) .

4.7. Theorem. If there exists an a > 0 such tha t for all a > a , P(x,a) < P (x ,c z )

for all x in some open neighborhood N ( x )  which contains some feasible point of ( 1.1),

and if f , g and h are differentiable at x , then x and some (U, e Rm~ satisfy
the Xarusb—Rubn-Tucker conditions (3.5) for problem (1.1) .

Proof . By Theorem 4.1 is feasible for problem (1.1) and hence g(x)  < 0 and

h(x) — 0. By Theorem 4.2 ii is a local minimum point of P1
(x,a) and consequently

- - - n4m+k(x ,y — 0,z — 0) I R constitute a local solution to the problem

Minimize f ( x )  + a(ey + &z)
n4m+k(x,y,z) R

gCx) — y < 0 (4.1)

- y < O

‘ h ( x ) — z < O

— h ( x ) — z < 0

-z~~~0

where e and I are vectors of ones in Ra and Rk respectively. Note that the

• Arrow—Rurwica--Uzawa constraint qualification (121 is satisfied at x , y = 0, z 0.

(In fact it is satisfied at all feasible points of (4.1) for which g and h are

differentiable. ) Hence there exist ( , r , . t ,q) I Rm
~~

4k
~~~ k such that

(x ,y — 0,x — O,v,r, s,t,q) satisfy the Karush-Kuhn-Tucker conditions for problem (4.1)

which turn out to be precisely the karush-Kuhn-Tucker conditions (3 .5) for problem

(1.1) upon making the identifications u — w and v — s - t.
Using Theorem 4.7 one may interpret the existence of a local minimum to the exact

penalty function as a constraint qualification which ensures the satisfaction of the

Ica rusb-XUhn—Tucker conditions at local minima of (1.1) .

— -20—
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We sketch in Figure 1 an outline of the relations obtained in this paper for

convenient reference.

Local Win. Exact Penalty LocalM 

Exa~~~:enalty S~~ ict

• 

Local M m .

CQ: Constraint qualification of (15] .

Strict Local Win.: Strict local minimum of problem (1.1).

Local Win.:  Local minimum of problem (1.1).

Exact Penalty Local Win.: Local minimum of the exact penalty function (1.2) .

Exact Penalty Strict Local Win.:  Strict local minimum of (1.2) .

XRT: First order Icarush-Kuhn-Tuckar conditions (3 .5> for problem (1.1) .

V.32: Second order Fritz John conditions of Theorem 3 l  for problem (1.1).

J~XT2 : Second order Xarush-Xuhn-Thcker conditions of Theorem 3.2 for problem (1.1).

Figure 1: Summar~j  of Results

—21—
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-• Our concluding result generalizes Zanqwill’s result (22) and is restricted to the

convex case . As in Theorem 4.6 an estimate of the size of the penalty parameter a

can be obtained in terms of the optimal Lagrange multipliers of the original problem (1.1) .

4.8. Theorem. Let x be a solution of (1.1) , f and g be convex on R~ and h

be linear . Let gCx) < 0 and h (x) — 0 for some x in Rn . For any given vector

norm 
~~~~~~ 

in R~~k let P(x, a) be its corresponding exact penalty function defined

as in (1.2) with Q satisfying (1.3) and being convex on R~ . Then P (x , a) < P(x,a)

for all x in Rn and a > & where

- ilu ,vIIa 
Q’(O+)

and (~ 
. i~ is the dual norm of Il

j !r~~ f .  Because Q is convex on R+ we have that QCt) ~ Q’CO+)t for t 0. For

a a and any x I Rn we have that

— f~~ + aQ IIg x~~ , h x s l l

— f Cx ) + ug (x) + vh(x)

< f(x)  + g(x) + h(x ) (By Theorem 5.4.8 (12) )

c f Cx) + ug (x)~~ + vh (x)

< fC x )  + ( I &, ~~l
’ II g Cx )~~,h ( x ) II

< f (x)  + 
~~~~~~~~~ 

Q (IIg(x)~~,h (x)~I) (By convexity of Q)

< f(x)  + aQ (l~g(x)~~,h (x) Il ) Cay choice of a)

— P (x , a) . 0

• —22—
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Note Added in Proof

Just before this report was sent to the printer we became aware of another closely

related paper

S. Dolecki and S. Rolewicz, “Exact penalty for local minima”, to appear,

in which mu1tifuh~$~ion theory was used to derive exactness of the penalty function

P1(x, a) under a “controllability condition” which is equivalent to the constraint

qualification (2.1).
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